

Sydney Brain Bank (SBB) publications arising from the use of SBB tissue 2013-2020

Please note that the reporting year is from April-April so a full data set is not yet available for 2020

2013 publications arising from use of SBB tissue

Journal articles

- 1. Bleasel, J. M., J. H. Hsiao, et al. Increased expression of ABCA8 in multiple system atrophy brain is associated with changes in pathogenic proteins. *J Parkinsons Dis* 2013; 3(3): 331-339.
- 2. Davies, K. M., D. J. Hare, et al. Localization of copper and copper transporters in the human brain. *Metallomics* 2013; 5(1): 43-51.
- 3. Hsiao, J. H., Y. Fu, et al. Elevation in sphingomyelin synthase activity is associated with increases in amyloid-beta peptide generation. *PLoS One* 2013; 8(8): e74016.
- 4. Murphy KE, Cottle L, Gysbers AM, Cooper AA, Halliday GM. ATP13A2 (PARK9) protein levels are reduced in brain tissue of cases with Lewy bodies. *Acta Neuropathol Commun* 2013; 1(1): 11.
- 5. Pamphlett, R. and S. Kum Jew. Heavy metals in locus ceruleus and motor neurons in motor neuron disease. *Acta Neuropathol Commun* 2013; 1(1): 81.
- 6. Reyes S, Cottam V, et al. Variability in neuronal expression of dopamine receptors and transporters in the substantia nigra. *Mov Disord* 2013; 28(10): 1351-9.
- 7. Reyes S, Fu Y, et al. Trophic factors differentiate dopamine neurons vulnerable to Parkinson's disease. *Neurobiol Aging* 2013; 34(3): 873-86.
- 8. Sutherland, G. T., B. Chami, et al. Oxidative stress in Alzheimer's disease: Primary villain or physiological by-product? *Redox Rep* 2013; 18(4): 134-141.
- 9. Wang J, Gouda-Vossos A, et al. DNA extraction from fresh-frozen and formalin-fixed, paraffinembedded human brain tissue. *Neuroscience Bulletin* 2013; 29(5): 649-54.

- 1. Chami, B. Oxidative damage in the early stages of Alzheimer's Disease. *Society for Free Radical Research Australasia*, Sydney, 2013.
- 2. Chami, B. Oxidative damage in the early stages of Alzheimer's Disease. *Australian Society of Medical Research National Scientific Conference*, Ballarat, 2013.
- 3. Leshchyns'ka, I. Cell adhesion molecules' role in synaptic transmission: offering new insight into brain disorder mechanisms. *BABS Research Symposium: Improving tomorrow through science*, Sydney, 2013.
- 4. Niedermayer, G., J. Kril, et al. Immunoglobulins in Frontotemporal Lobar Degeneration. *Australian Neuroscience Society Meeting*. Melbourne, 2013.
- 5. Stevens C, Lewis S, and Halliday GM. Variability in α- and β-synuclein in Parkinson's disease and multiple system atrophy. *Australian Neuroscience Society Meeting*, Melbourne, 2013.
- *6.* Sytnyk, V. Mechanisms of abnormal synaptic adhesion in Alzheimer's disease. *7th A+PD Symposium*, Queensland Brain Institute, 2013.
- 7. Sytnyk, V. NCAM2-mediated synaptic adhesion in the maintenance of glutamatergic synapses. *The Hunter Meeting*, Pokolbin, NSW, 2013.

- 1. Bleasel, J. M., J. H. Hsiao, et al. Altered expression of ABCA8 in multiple system atrophy brain. International *Conference on Alpha-synuclein in Parkinson's Disease & Related Neurodegenerative Disease*, Dubai, Unites Arab Emirates, 2013.
- 2. Britton A, McGinley C, et al. Neuronal loss and pathology in language-associated regions of logopenic variant of progressive aphasia. *12th National Conference of Emerging Researchers in Ageing*, Sydney, 2013.
- 3. Chare L et al. Alzheimer's disease in clinical versus pathological frontotemporal dementia cohorts V How big is the clinicopathological mismatch? *The 9th International Conference on Frontotemporal Dementias*, Canada, 2013.
- 4. Chare L et al. New criteria for frontotemporal dementia syndromes: clinical and pathological diagnostic implications. The TOW Research Awards, Australia, 2013.
- 5. Halliday, G. and S. Kim. Potential role of ABCA8 in oligodendrocyte. *Australian Neuroscience Society* 33rd Annual Meeting. Melbourne, 2013.
- 6. Huang Y et al. Cytokines associated with Parkinson's disease. XIX World Congress on Parkinson's Disease and Related Disorders, Shanghai, China 2011.
- 7. Kim S & Halliday GM. Evidence for lipid dystrophy in multiple system atrophy brain. XX World Congress on Parkinson's Disease and Related Disorders, Geneva, Switzerland, 2013.
- 8. Kim S & Halliday GM. Potential role of ABCA8 in oligodendrocyte. *Australian Neuroscience Society Meeting,* Melbourne, 2013.
- 9. Martinez Olivares C et al. Genetic influence of MAPT on the pathology of Parkinson's disease. *Australian Neuroscience Society, 31st Annual Meeting,* Auckland, 2011.
- 10. Mills, J. D., T. Kavanagh, et al. Unique transcriptome patterns of grey and white matter corroborate structural and functional heterogeneity in the human frontal lobe. *XX World Congress on Parkinson's Disease and Related Disorders,* Geneva, Switzerland, 2013.
- 11. Mills, J. D., S. Kim, et al. Differential isoform expression of the alpha- and beta-synuclein genes in multiple system atrophy brain. *34th Lorne Genome Conference*, Lorne, 2013.
- 12. Murphy, K., A. A. Cooper, et al. A subcellular organelle isolation method for frozen post- mortem human brain tissue. *Australian Neuroscience Society Meeting*, Adelaide, 2013.
- Murphy, K., A. A. Cooper, et al. Decreased lysosomal autophagy rather than lysosomal degeneration associates with α-synuclein pathology in Parkinson's disease. *Alpha- synuclein in Parkinson's Disease and Related Neurodegenerative Diseases: from mechanisms to therapeutic strategies*. Dubai, UAE, 2013.
- 14. Wang G et al. Relationships between non-motor symptoms in Parkinson's disease, and their genetic and pathologic basis. *17th International Congress of Parkinson's disease and Movement Disorders*, Sydney, Australia, 2013.
- 15. Zhou, J., Y. Huang, et al. Changes in α-synuclein phosphorylation and associated kinases in Parkinson's disease. *The International Conference on α-synuclein in Parkinson's Disease & Related Neurodegenerative Diseases*, Dubai, United Arab Emirates, 2013.
- 16. Zhou, J., Y. Huang, et al. Increasing α-synuclein Ser129 phosphorylation in Parkinson's disease is associated with increasing kinase levels. *The 11th International Conference on Alzheimer's & Parkinson's Disease,* Florence, Italy, 2013.

Journal articles

- 1. Abbott SK et al. Altered ceramide acyl chain length and ceramide synthase gene expression in Parkinson's disease. *Mov Disor*, 2014; 29(4): 518-26.
- 2. Bleasel JM et al. Lipid dysfunction and pathogenesis of multiple system atrophy. *Acta Neuropathol Commun* 2014; 2(15).
- 3. Bras J et al. Genetic analysis implicates APOE, SNCA and suggests lysosomal dysfunction in the etiology of dementia with Lewy bodies. *Human Molecular Genetics* 2014; 1;23(23):6139-46.
- 4. Chare L et al. New criteria for frontotemporal dementia syndromes: clinical and pathological diagnostic implications. *Journal of Neurology, Neurosurgery, and Psychiatry* 2014; 85(8): 865-70.
- Cheshire, P., K. Bertram, et al. Influence of single nucleotide polymorphisms in COMT, MAO-A and BDNF genes on dyskinesias and levodopa use in Parkinson's disease. *Neurodegen Dis* 2014; 13(1): 24-28.
- 6. Coupland K, et al. DNA methylation of the MAPT gene in Parkinson's disease cohorts and modulation by vitamin E in vitro. *Mov Disord* 2014; 29(13): 1606-1614.
- 7. Couttas TA et al. Loss of the neuroprotective factor Sphingosine 1-phosphate early in Alzheimer's disease pathogenesis. *Acta Neuropathol Commun* 2014;29(2): 150
- 8. Davies K et al. Copper pathology in vulnerable brain regions in Parkinson's disease. *Neurobiol Aging* 2014; 35(4): 858-866.
- 9. Don AS et al. Altered lipid levels provide evidence for myelin dysfunction in multiple system atrophy. *Acta Neuropathol Commun* 2014; 29 (2):150.
- 10. Hall H et al. Hippocampal Lewy pathology and cholinergic dysfunction are associated with dementia in Parkinson's disease. *Brain* 2014; 137(Pt 9): 2493-508.
- Halliday GM and Murphy KE. Reply: Lysosomal dysfunction in Parkinson's disease. *Brain* 2015; 138(Pt 4): e340. Kim WS et al. Alpha-synuclein biology in Lewy body diseases. *Alzheimer's Research & Therapy* 2014; 6(5): 73.
- Mills JD et al. Long intervening non-coding RNA 00320 is human brain-specific and highly expressed in the cortical white matter. *Neurogenetics* 2015;16(3): 201-13. Murphy KE et al. Reduced glucocerebrosidase is associated with increased α- synuclein in sporadic Parkinson's disease. *Brain* 2014; 137(Pt 3): 834-48.
- 13. Murphy KE and Halliday GM. Glucocerebrosidase deficits in sporadic Parkinson disease. *Autophagy* 2014; 10(7): 1350-1
- 14. Rahman T, Davies DS, et al. Cofilin rods and aggregates occur with tau pathology and the development of Alzheimer's disease. *J Alzheimers Dis* 2014; 42(4):1443-60.
- 15. Tan RH et al. Beyond the temporal pole: limbic memory circuit in the semantic variant of primary progressive aphasia. *Brain* 2014; 137(Pt 7): 2065-76.
- 16. Wong JH et al. Exploring myelin dysfunction in multiple system atrophy. *Experimental Neurobiology* 2014; 23(4): 337-44.

- 1. Double KL. Metals in neurodegenerative diseases. *Asian Biol Inorganic Chemistry*, Australia, 2014.
- 2. Double KL. Neuronal Vulnerability in Parkinson's Disease. Neurotrauma Australia, 2014.
- 3. Hancock SE et al. The changes seen in human hippocampus phospholipids during Alzheimer's disease are not a magnification of those seen in normal ageing. *Australian Society for Medical Research, Australia*, 2014.
- 4. Tan R. TDP-43 in the hypoglossal nucleus identifies amyotrophic lateral sclerosis in behavioural variant frontotemporal dementia. *Inter-University Neuroscience & Mental Health Conference*, Sydney, 2014.

Virachit S, Werry E, et al. Growth factors are altered in neurogenic regions of the Parkinson's disease brain. *Dementia, Ageing and Neurodegenerative Diseases Group*, Adelaide, 2014.

- 5. Virachit S, Werry E et al. Growth factors are altered in neurogenic regions of the Parkinson's disease brain. *Dementia, Ageing and Neurodegenerative Diseases Group,* Adelaide, Australia, 2014.
- 6. Wang G, Huang Y, et al. Relationships between non-motor symptoms in Parkinson's disease, and their genetic and pathological basis. *17th International Congress of Parkinson's Disease and Movement Disorders,* Sydney, 2014.

- 1. Chare L et al. New criteria for frontotemporal dementia syndromes impact most on language variants. *Society for Neuroscience*, USA, 2014.
- 2. Chare L et al. Survival in the language variants of FTD. *International Conference on Frontotemporal Dementias,* Canada, 2014.
- 3. Couttas TA et al. Breakdown of Myelin Lipids as a Precursor to Alzheimer's Disease Pathogenesis. *Alzheimer's and Parkinson's Disease Symposium,* UNSW, Sydney, 2014.
- 4. Fatima M et al. Spreading of pathology in motor neuron disease. *Inter-University Neuroscience & Mental Health Conference*, Sydney, 2014.
- 5. Gabery S et al. Gene expression changes in emotion and metabolism regulating neuropeptide systems in the hypothalamus in clinical Huntington's disease. *Hereditary disease foundation HD2014: The Milton Wexler Celebration of Life*, USA, 2014.
- 6. Gabery S et al. Gene expression changes in emotion and metabolism regulating neuropeptide systems in the hypothalamus in clinical Huntington's disease. *8th European Huntington's Disease Network Plenary Meeting*, Spain, 2014.
- 7. Marshall L et al. Understanding the Cause and Progression of Sporadic Alzheimer's Disease. *Alzheimer's and Parkinson's Disease Symposium*, UNSW Sydney, 2014.
- 8. Norris et al. Phosphatidylcholines are elevated in the mitochondrial and microsomal membranes of the human hippocampus in Alzheimer's disease, while phosphatidylethanolamines are reduced. *APD/CADD Symposium*, Australia, 2014.
- 9. Steel A et al. The PI3K/Akt Pathway is not involved in early Alzheimer's disease. *Alzheimer's and Parkinson's Disease (A&PD) Symposium*, Australia, 2014.
- 10. Virachit, S., E. Werry, et al. Growth factors are altered in neurogenic regions of the Parkinson's disease brain. *Australian Neuroscience Society Conference*. Adelaide, 2014.
- 11. Virachit, S., E. Werry, et al. Growth factors are altered in neurogenic regions of the Parkinson's disease brain. *XX World Congress on Parkinson's Disease and Related Disorders*. Geneva, Switzerland, 2014.
- 12. Virachit, S., E. Werry, et al. Levels of growth factors are altered in the hippocampus of the Parkinson's disease brain. *Brain Sciences Symposium*, University of New South Wales, 2014.
- 13. Virchaldt S. Levels of growth factors are altered in the hippocampus in Parkinson's disease. 18th *International Congress of Parkinson's Disease and Movement Disorders*, Sweden, 2014.
- 14. Yang, Y., C. Shepherd, et al. Hippocampal glia are affected more than neurons in the very elderly without significant neuropathologies, 2014
- 15. Yang Y et al. Hyperploidy is associated with hippocampal cell loss and not just Alzheimer's disease pathology. *8th A+PD / 3rd CADD symposium*, Australia, 2014.
- 16. Yang Y et al. Aneuploidy is increased in Lewy body diseases. *Inter-University Neuroscience and Mental Health Conference*, Australia, 2014. Yousef P. The early pathogenesis of Alzheimer's Disease is characterised by oxidative stress and increased Heme oxygenase-1 activity. *22nd Meeting of the Society for Free Radical Research (Australasia*), Australia, 2014.
- 17. Yousef P & Witting P. The early pathogenesis of Alzheimer's Disease is characterised by oxidative stress and increased Heme oxygenase-1 activity. *8th International Conference on Heme Oxygenases, BioIron and Oxidative Stress*, Australia, 2014.

Journal articles

- 1. Abbott SK et al. Fatty acid composition of the anterior cingulate cortex indicates a high susceptibility to lipid peroxidation in Parkinson's disease. *Journal of Parkinson's disease* 2015; 5(1): 175-85.
- 2. Coupland KG et al. Effect of PSEN1 mutations on MAPT methylation in early-onset Alzheimer's disease. *Curr Alzheimer Res* 2015; 12(8):745-51.
- 3. Fatima M et al. Spread of pathology in amyotrophic lateral sclerosis: assessment of phosphorylated TDP-43 along axonal pathways. *Acta Neuropathol Commun* 2015; 3(1), 47.
- 4. Gabery S et al. Selective loss of oxytocin and vasopressin in the hypothalamus in early Huntington disease: a case study. *Neuropathology and Applied Neurobiology* 2015; 41(6): 843-8.
- 5. Huang Y et al. SNCA Gene, but Not MAPT, Influences Onset Age of Parkinson's Disease in Chinese and Australians. *Biomed Res Int.* 2015; 2015:135674.
- 6. Leshchyns'ka I et al. Aβ-dependent reduction of NCAM2-mediated synaptic adhesion contributes to synapse loss in Alzheimer's disease. *Nat Commun* 2015; 6:8836. McCann H et al. Unusual α-synuclein and cerebellar pathologies in a case of hereditary myoclonus-dystonia without SGCE mutation. *Neuropathology and Applied Neurobiology* 2015; 41(6):837-42.
- 7. Lourenco GF et al. Long noncoding RNAs in TDP-43 and FUS/TLS-related frontotemporal lobar degeneration (FTLD). *Neurobiol Dis* 2015; 82:445-54.
- 8. McCann H et al. Restricted disease propagation in multiple system atrophy with prolonged survival. *Neuropathology and Applied Neurobiology* 2015;41(5):681-5.
- 9. McCann H et al. Unusual α -synuclein and cerebellar pathologies in a case of hereditary myoclonusdystonia without SGCE mutation. *Neuropathology and Applied Neurobiology* 2015; 41(6):837-42.
- 10. Mills JD et al. High expression of long intervening non-coding RNA OLMALINC in the human cortical white matter is associated with regulation of oligodendrocyte maturation. *Molecular Brain* 2015;10 (8): 2.
- 11. Mills JD et al. Transcriptome analysis of grey and white matter cortical tissue in multiple system atrophy. *Neurogenetics* 2015;16(2): 107-22.
- 12. Murphy KE et al. Lysosomal-associated membrane protein 2 isoforms are differentially affected in early Parkinson's disease. *Mov Disord* 2015; 30(12): 1639-47.
- 13. Riley BE et al. Systems-based analyses of brain regions functionally impacted in Parkinson's disease reveals underlying causal mechanisms. *PLoS One* 2015; 29;9(8).
- 14. Tan RH et al. TDP-43 proteinopathies: pathological identification of brain regions differentiating clinical phenotypes. *Brain* 2015; Oct;138(Pt 10):3110-22.
- 15. van Eersel J et al. Early-onset axonal pathology in a novel P301S-Tau transgenic mouse model of frontotemporal lobar degeneration. *Neuropathology and Applied Neurobiology* 2015; 41(7): 906-25.
- 16. Yue Yang et al. Aneuploidy in Lewy body diseases. *Neurobiol Ageing* 2015; 36(3): 1253-60.

- 1. Don A. Defective myelin lipid biosynthesis in pre-clinical Alzheimer's Disease identified through LCxMS/MS analysis. *Virtual Symposium on Applied Separation Sciences*, online, 2015.
- 2. Dzamko N. Leucine-rich repeat kinase 2 and toll-like receptor inflammatory signalling. *International Neurochemistry Society Meeting*, Cairns, 2015.
- 3. Ling H et al. Neuropathological diagnostic accuracy of corticobasal degeneration: A review of 140 cases. *Annual meeting of the British Neuropathology Society*, London, 2015.
- 4. Sytnyk V. The role of the neural cell adhesion molecules in formation and maintenance of excitatory synapses. *4th CADD symposium*, UNSW, Sydney, 2015.

- 5. Trist BG et al. A novel proteinaceous aggregate associated with neuronal loss in Parkinson's disease. Dementia, Ageing and Neurodegenerative Diseases Groups (DANDIS) to the 25th ISN-APSN Joint Biennial Meeting, Australia, 2015.
- 6. Wellings T et al. Deiters' neurons the elephant in the vestibular system. *Neuro-Otology Society of Australia ASM*, Melbourne, 2015.

- 1. Couttas T et al. Loss of ceramide synthase 2, an essential enzyme for myelin lipid biosynthesis, drives myelin degeneration in Alzheimer's Disease. *International Society for Neurochemistry*, Cairns, 2015.
- 2. Davies D et al. Cofilin-actin aggregates and microglial cell morphology changes in Alzheimer's Disease. *Sydney Glia Meeting*, Manly, 2015.
- 3. Double, K. Reduced subventricular zone neurogenesis in Parkinson's disease is associated with increased phosphorylated alpha-synuclein. *25th ISN Meeting, 13th APSN & 35th ANS Meeting,* Cairns, 2015.
- 4. Fatima, M., & Kril, J. Spread of pathology in motor neuron disease: assessment of pTDP-43 along axonal pathways. *25th ISN Meeting, 13th APSN & 35th ANS Meeting,* Cairns, 2015.
- 5. Fernandez-Enright, F. Gene profiling in different stages of Alzheimer's disease: a genome-wide study. *25th ISN Meeting, 13th APSN & 35th ANS Meeting,* Cairns, 2015.
- 6. Hancock SE et al. Phosphatidylcholines are elevated in the mitochondrial and microsomal membranes of the human hippocampus in Alzheimer's disease, while phosphatidylethanolamines are reduced. *Australian and New Zealand Society for Mass Spectrometry Conference Australia*, 2015.
- Huang Y et al. Reduction of ROCK1 in human brain with Alzheimer's disease. *International Society of Neurochemistry meeting*, Cairns, 2015. Lim, J., & Sutherland, G. T. The PI3K/Akt/GSK3beta pathway is not involved in early Alzheimer's disease. *25th ISN Meeting*, *13th APSN & 35th ANS Meeting*, Cairns, 2015.
- 8. Ling H et al. Neuropathological diagnostic accuracy of corticobasal degeneration: A review of 140 cases. *International Movement Disorders Society Congress*, San Diego, 2015.
- 9. Lourenco GF et al. Disruption of nuclear structure in TDP-43-related frontotemporal lobar degeneration (FTLD) with and without c9orf72 repeat expansion. *Asia Pacific FTD and MND Meeting*, Sydney, 2015.
- 10. Michael J et al. Characterisation of glial and neuronal pathology in non- Alzheimer's Disease tauopathies. *Inter-University Neuroscience & Mental Health Conference*, Sydney, 2015.
- 11. Trist BG et al. A novel proteinaceous aggregate associated with neuronal loss in Parkinson's disease. *25th ISN-APSN Joint Biennial Meeting*, Australia, 2015.
- 12. Yang Y et al. Cell number and DNA content are not affected in normal ageing a liquid stereological study. *Universitas 21 Graduate Research Conference Celebrating Ageing Research*, New Zealand, 2015.
- 13. Youssef P et al. Increased HO-1 activity with no evidence of oxidative stress in the early pathogenesis of Alzheimer's disease. *Societies for Free Radical Research Australasia and Japan (SFRRAJ),* Christchurch, New Zealand, 2015.

Journal articles

- 1. Chami B et al. The rise and fall of insulin signalling in Alzheimer's disease. *Metab Brain Dis* 2016; 31(3):497-515.
- 2. Coupland KG et al. Role of the Long Non-Coding RNA MAPT-AS1 in Regulation of Microtubule Associated Protein Tau (MAPT) Expression in Parkinson's Disease. *PLoS One.* 2016; 23:11(6):e0157924.
- 3. Davies KM et al. Copper dyshomoeostasis in Parkinson's disease: implications for pathogenesis and indications for novel therapeutics. *Clin Sci (Lond)* 2016; 130(8):565-74.
- 4. Ittner A et al. Site-specific phosphorylation of tau inhibits amyloid-β toxicity in Alzheimer's mice. *Science.* 2016; 18;354(6314):904-908.
- 5. Jayasena T et al. Application of Targeted Mass Spectrometry for the Quantification of Sirtuins in the Central Nervous System. *Sci Rep.* 2016; 20;6:35391.
- 6. Landeck N et al. A novel multiplex assay for simultaneous quantification of total and S129 phosphorylated human alpha-synuclein. *Mol Neurodegener*. 2016;11(1):61.
- 7. Leyton CE et al. Distinctive pathological mechanisms involved in primary progressive aphasias. *Neurobiol Aging* 2016; 38:82-92.
- 8. Tan RH et al. Cerebellar neuronal loss in ALS cases with ATXN2 intermediate repeat expansions. *Annals of Neurology* 2016; 79(2): 295-305.
- 9. Wang G et al. Variants in the SNCA gene associate with motor progression while variants in the MAPT gene associate with the severity of Parkinson's disease. *Parkinsonism Relat Disord* 2016; 24:89-94.
- 10. Xu CJ et al. The Emerging Therapeutic Role of NGF in Alzheimer's Disease. *Neurochem Res.* 2016;41(6):1211-8.

- 1. Dzamko N et al. A comprehensive analysis of LRRK2 expression in human PD brain. *Leucine Rich Repeat Kinase 2: Ten Years Along the Road to Therapeutic Intervention*, Greenlands, UK, 2016.
- 2. Cooper A. Investigating the contributions of alternative splicing and long non-coding RNA in Parkinson's Disease. *Linking genomics and neurobiology to understand the brain and its diseases*, Garvan Institute, Sydney, Australia, 2016.
- 3. Halliday G et al. Dysfunctional lysosomes occur prior to any degenerative changes in the brains of patients with Parkinson's disease. *Annual Conference of the Japanese Neuroscience Society*, Yokohama, Japan, 2016.
- 4. Lim J et al. Perturbations in Insulin/IGF1 Signalling in Alzheimer's disease (AD) and its contribution to AD Pathogenesis. *Australasian Neuroscience Society Annual Meeting*, Hobart, Australia, 2016.
- 5. Ling H et al. Hierarchical pathological progression of corticobasal degeneration. *British Neuropathological Society*, 2016.
- 1. Wellings T et al. A novel neuropathology involving Deiters' neurons of the lateral vestibular nucleus in Parkinson's disease with postural instability. *Neuro-otology Society of Australia*, Newcastle, Australia, 2016.
- 2. Youssef P et al. Increased levels of nrf-2/ ho-1 in the early pathogenesis of Alzheimer's disease. 23rd Joint meeting of the Society for Redox Biology and Medicine and Society for Free Radical Research International, San Francisco, CA, USA, 2016.

- 1. Fatima M et al. Imaging-pathology correlates in the corticospinal tract in motor neuron disease. *Australian Society for Medical Research Annual Meeting*, Sydney, 2016.
- 2. Gao J et al. Activation of toll-like receptor 2 increases alpha-synuclein levels in neuronal cells. *Australasian Neuroscience Society Annual Meeting*, Hobart, Australia, 2016.
- 3. Genoud S et al. Metallation alterations of superoxide dismutase 1 and metallothionein-II in the Parkinson's disease brain. *Australian Biology of Aging*, Coogee, Australia, 2016.
- 4. Genoud S et al. Metallation alterations of superoxide dismutase 1 and metallothionein-ii in the Parkinson's disease brain. *Australasian Neuroscience Society Annual Meeting*, Hobart, Australia, 2016.
- 5. Tan R et al. Prevalence of Amyloid pathology and PiB positivity in frontotemporal dementia. *ICFTD*, Munich, Germany, 2016.
- 6. Trist BG et al. A novel vulnerability specific pathology in the Parkinson's brain provides support for coinciding neuropathological paradigms. *Australian Biology of Aging*, Coogee, Australia, 2016.
- 7. Trist BG et al. A pathological link between Parkinson's disease and Amyotrophic Lateral Sclerosis? 20th International Congress of Parkinson's Disease and Movement Disorders, Berlin, Germany, 2016.
- 8. Trist BG et al. Superoxide dismutase-1; a potential mediator of neuronal degeneration under copperdeficient conditions in the Parkinson's disease brain? *Australasian Neuroscience Society Annual Meeting*, Hobart, Australia, 2016.

Journal articles

- 1. Davies DS et al. Microglia show altered morphology and reduced arborization in human brain during aging and Alzheimer's disease. *Brain Pathol.* 2017; 27(6):795-808.
- 2. Dzamko N et al. Toll-like receptor 2 is increased in neurons in Parkinson's disease brain and may contribute to alpha-synuclein pathology. *Acta Neuropathol.* 2017:133(2):303-319.
- 3. Dzamko N et al. LRRK2 levels and phosphorylation in Parkinson's disease brain and cases with restricted Lewy bodies. *Mov Disord*. 2017;32(3):423-432.
- 4. Genoud S et al. Subcellular compartmentalisation of copper, iron, manganese, and zinc in the Parkinson's disease brain. *Metallomics* 2017; 9(10):1447-1455.
- 5. Kovacs GG et al. Multisite Assessment of Aging-Related Tau Astrogliopathy (ARTAG). *J Neuropathol Exp Neurol* 2017; Jul 1;76(7):605-619.
- 6. Kun-Rodrigues C et al. Analysis of C9orf72 repeat expansions in a large international cohort of dementia with Lewy bodies. *Neurobiol Aging* 2017; Jan; 49: 214.e13–214.e15.
- 7. Sutherland GT et al. Epidemiological Approaches to Understanding the Link Between Type 2 Diabetes and Dementia. *J Alzheimers Dis.* 2017; 59(2):393-403.
- 8. Tan RH et al. Assessment of amyloid β in pathologically confirmed frontotemporal dementia syndromes. *Alzheimers Dement (Amst)* 2017; May 29;9:10-20.
- 9. Tan RH et al. Distinct TDP-43 inclusion morphologies in frontotemporal lobar degeneration with and without amyotrophic lateral sclerosis. *Acta Neuropathol Commun* 2017; Oct 27;5(1):76.
- 10. Tan RH et al. Multiple neuronal pathologies are common in young patients with pathologically proven frontotemporal lobar degeneration. *Neuropathol Appl Neurobiol* 2017; [Epub ahead of print].
- 11. Trist BG et al. Amyotrophic lateral sclerosis-like superoxide dismutase 1 proteinopathy is associated with neuronal loss in Parkinson's disease brain. *Acta Neuropathol* 2017; 134(1): 113-127.
- 12. Wellings TP et al. Altered neurofilament protein expression in the lateral vestibular nucleus in Parkinson's disease. *Exp Brain Res* 2017; 235(12): 3695-3708.
- 13. Yang Y et al. Increased an euploidy is not a universal feature across α -synucleinopathies. *Mov Disord.* 2017; 32(3):475-476.
- 14. Yang Y et al. von Economo Neuron Density and Thalamus Volumes in Behavioral Deficits in Frontotemporal Dementia Cases with and without a C9ORF72 Repeat Expansion. *J Alzheimers Dis* 2017;58(3):701-709.

- 1. Cooper A. Neurogenomic analyses of multiple brain regions from idiopathic Parkinson's disease patients reveals insights into neuroinflammation. *Australasian Neuroscience Society Meeting*, Sydney, 2017.
- 2. Cooper A. Neurogenomic analyses of multiple brain regions from idiopathic Parkinson's disease patients reveals insights into neuroinflammation. *Queenstown Research Week*, New Zealand, 2017.
- 3. Cooper A. Neurogenomic analyses of multiple brain regions from idiopathic Parkinson's disease patients reveals insights into neuroinflammation. *Grand Rapids Challenge*, Grand Rapids, USA, 2017.
- 4. Cooper A. Neurogenomic analyses of multiple brain regions from idiopathic Parkinson's disease patients reveals insights into neuroinflammation. *Parkinsons Disease Conference*, Cairns, 2017.
- 5. Genoud S et al. Alterations in biometals and metalloproteins in the soluble fraction of the Parkinson's disease brain. *Inter-University Neuroscience and Mental Health Conference*, Western Sydney University, Australia, 2017.
- 6. Genoud S et al. Biometal dyshomeostasis and metalloprotein disruptions in the soluble fraction of the Parkinson's disease brain. *Bosch Young Investigators Symposium*, University of Sydney, Australia, 2017.

- 7. Stevens CH et al. Increased tau phosphorylation in amyotrophic lateral sclerosis. *Proteostasis and disease symposium*, Wollongong, Australia, 2017.
- 8. Stevens CH et al. Increased phosphorylated and insoluble tau in motor neuron disease. *Australasian Neuroscience Society Meeting*, Sydney, 2017.
- 9. Sytnyk V. Disruption in synaptic adhesion in Alzheimer's disease. *Australasian Neuroscience Society Meeting*, Sydney, 2017.
- 10. Tan RH et al. 11c-Pittsburgh Compound B and pathological assessment of β-amyloid in frontotemporal dementia syndromes, *SFN*, Washington, USA, 2017.
- 11. Trist BG et al. Copper dyshomeostasis and oxidative stress in Parkinson's disease. *Forefront Research Group Meeting*, Sydney, Australia, 2017.
- 12. Trist et al. Metal-deficient superoxide dismutase 1 associated with neurodegeneration in Parkinson's disease. *Bosch Young Investigator's Symposium*, Sydney, 2017.
- 13. Trist et al. Metal dyshomeostasis, oxidative stress and protein aggregation; a toxic triad underlying neuronal loss in Parkinson's disease? *Inter-University Neuroscience and Mental Health Conference*, Sydney, 2017.

- 1. Affleck A et al. Increases in clusterin protein levels occur in the earliest stages of Alzheimer's disease and are associated with pathological changes in tau and Aβ. *Brain Sciences UNSW*, Sydney, Australia, 2017.
- 2. Couttas T et al. Ceramides, associated with insulin resistance, increase with age in the human hippocampus. *Australian Dementia Forum*, Melbourne, 2017.
- 3. Duly A et al. Dysregulated micro RNA expression in Parkinson's Disease Provides a Shared Mechanism to the Dysfunction of Several Pathways Associated With Parkinson's: Endocytosis, Autophagy, Mitochondrial function and Lysosomal homeostasis. *Australasian Neuroscience Society Meeting*, Sydney, 2017.
- 4. Genoud S et al. Alterations in biometals and metalloproteins in the soluble fraction of the Parkinson's disease brain. *Australasian Neuroscience Society Meeting*, Sydney, 2017.
- 5. Katzeff J et al. Expression studies of top 10 GWAS genes in multiple system atrophy brain. *Brain and Mind Centre Symposium*, Sydney, 2017.
- 6. Lack AT et al. Cytotoxic t cells are significantly increased in subtypes of frontotemporal lobar degeneration. *Australasian Neuroscience Society Meeting*, Sydney, 2017.
- 7. Lourenco G et al. Whole transcriptome analysis (RNA-Seq) reveals distinct gene and isoform expression profiles and alternative splicing defects in c9orf72-related and sporadic frontotemporal lobar degeneration (FTLD-TDP). *Australasian Neuroscience Society Meeting*, Sydney, 2017.
- 8. Paasila P et al. Spatiotemporal relationships between pathological changes and microglial subtypes in differentially affected areas of the Alzheimer's disease brain. *Australasian Neuroscience Society Meeting*, Sydney, 2017.
- 9. Poljak A et al. Proteomics of the Alzheimer's disease brain: neuropathology and neuroresilience. *AAIC2017*, London, UK, 2017.
- 10. Smith C. Differential Lipid Histopathology in Alzheimer's Disease. *Australasian Neuroscience Society Meeting*, Sydney, 2017.
- 11. Trist BG et al. Lessons learnt from SOD1 dysfunction in Parkinson's disease and familial amyotrophic lateral sclerosis. *Australasian Neuroscience Society Meeting*, Sydney, 2017.
- 12. Trist BG et al. Novel superoxide dismutase-1 proteinopathy is associated with Lewy pathology and neuronal loss in Parkinson's disease. *Joint Meeting of the International Society for Neurochemistry and European Society for Neurochemistry*, Paris, 2017.
- 13. Zhao Y et al. LRRK2 is decreased in the brain of patients with LRRK2 mutations and is associated with dysfunction of the retromer complex. *Australasian Neuroscience Society Meeting*, Sydney, 2017.

14. Crockford DR et al. Characterising astrocytes in neurologically normal control brain tissue, 37th Annual Meeting of the *Australasian Neuroscience Society*, Sydney, 2017.

Journal articles

- 1. Baldo B et al. Quantification of Total and Mutant Huntingtin Protein Levels in Biospecimens Using a Novel alphaLISA Assay. *eNeuro* 2018;5(4):ENEURO.0234-18.2018.
- 2. Forrest SL et al. Retiring the term FTDP-17 as MAPT mutations are genetic forms of sporadic frontotemporal tauopathies. *Brain* 2018; 141(2): 521-534.
- 3. Foxe D et al. Intrafamilial Phenotypic Variability in the C9orf72 Gene Expansion: 2 Case Studies. *Front Psychol* 2018 Sep 3;9:1615.
- 4. Guerreiro R et al. Investigating the genetic architecture of dementia with Lewy bodies: a two-stage genome-wide association study. *Lancet Neurol* 2018; Jan;17(1):64-74.
- 5. Lumsden AL et al. Dysregulation of Neuronal Iron Homeostasis as an Alternative Unifying Effect of Mutations Causing Familial Alzheimer's Disease. *Front Neurosci* 2018;12:533.
- 6. O'Rourke MB et al. Optimal Preparation of Formalin Fixed Samples for Peptide Based Matrix Assisted Laser Desorption/Ionization Mass Spectrometry Imaging Workflows. *J Vis Exp.* 2018;16;(131).
- 7. Parakh S et al. ERp57 is protective against mutant SOD1-induced cellular pathology in amyotrophic lateral sclerosis. *Hum Mol Genet* 2018; 27(8): 1311-1331.
- 8. Schwartz RS et al. Impact of small vessel disease on severity of motor and cognitive impairment in Parkinson's disease. *J Clin Neurosci* 2018; 58:70–74.
- 9. Shepherd CE et al. Region- and Cell-specific Aneuploidy in Brain Aging and Neurodegeneration. *Neuroscience* 2018; 374326-334.
- 10. Shen LL et al. The ProNGF/p75NTR pathway induces tau pathology and is a therapeutic target for FTLD-tau. *Mol Psychiatry* 2018;23(8):1813–1824.
- 11. Trist BG et al. Accumulation of dysfunctional SOD1 protein in Parkinson's disease is not associated with mutations in the SOD1 gene. *Acta Neuropathol* 2018; Jan;135(1):155-156.
- 12. Trist BG et al. A Proposed Mechanism for Neurodegeneration in Movement Disorders Characterized by Metal Dyshomeostasis and Oxidative Stress. *Cell Chem Biol* 2018; 25 (7), 807-816.
- 13. Woerman AL et al. MSA prions exhibit remarkable stability and resistance to inactivation. *Acta Neuropathol* 2018 Jan;135(1):49-63.
- 14. Youssef P et al. Evidence supporting oxidative stress in a moderately affected area of the brain in Alzheimer's disease. *Sci Rep* 2018; 8(1): 11553.
- 15. Zhao Y et al. Reduced LRRK2 in association with retromer dysfunction in post-mortem brain tissue from LRRK2 mutation carriers. *Brain* 2018; 141(2): 486-495.

- 1. Cooper A. Early diagnosis and slowing disease progression in Parkinson's Disease. *Parkinson's ACT*, Canberra, 2018.
- 2. Cooper A. Australian Parkinson's Mission. *Linked Clinical Trials and Grand Challenges in Parkinsons Disease*. Van Andel Research Institute, Grand Rapids, Michigan, 2018.
- 3. Gabery S. Effects on SIRT1 and hypothalamic metabolic pathways in Huntington disease. *Nordic Huntington Disease Research Meeting*, Lund University, Sweden, 2018.
- 4. Kirik D. Investigating Imaging and Wet Biomarker Outcomes in Synucleinopathy Animal Models. *MultiSyn Final Meeting*, Tübingen, Germany, 2018.
- 5. Ling H. Rapidly progressive corticobasal degeneration: an aggressive variant. *119th Meeting of the British Neuropathological Society*, London, 2018.
- 6. Tan R et al. Distinct TDP-43 inclusion morphologies in FTLD and FTLD-ALS. *International symposium on ALS/MND*, Glasgow, 2018.
- 7. Trist B. Identification of a shared pathway to neuronal death in post-mortem Parkinson's disease and amyotrophic lateral sclerosis. *Australasian Neuroscience Society*, Brisbane, 2018.

- 1. Bhatia S et al. Differential expression of apolipoprotein D in Alzheimer's disease and frontotemporal dementia brain. *NNIDR Australian Dementia Forum*, Sydney, 2018.
- 2. Forrest SL et al. Unravelling astrocytic pathology in frontotemporal lobar degeneration. *International Conference on Frontotemporal Dementias,* Sydney, 2018.
- 3. Gabery S et al. Sirt1 is increased in affected brain regions in Huntington disease impacting hypothalamic metabolic pathways. *European Huntington Disease Network (EHDN) Plenary Meeting*, Vienna, Austria, 2018.
- 4. Genoud S et al. Soluble Iron and copper dyshomeostasis affect metalloprotein metallation in the Parkinson's disease brain. *International Neuroscience Winter Conference*, Solden, Austria, 2018.
- 5. Grima N et al. Genetic and immunopathological analysis of CHCHD10 in Australian amyotrophic lateral sclerosis and frontotemporal dementia, *MNDRIA Annual Meeting*, Melbourne, 2018.
- 6. Grima N et al. Analysis of genetic variation and pathology of CHCHD10 in cases of Australian amyotrophic lateral sclerosis and frontotemporal dementia. *Macquarie Neurodegeneration Meeting*, Macquarie University, 2018.
- 7. Paasila P et al. Microglial subtypes in differentially affected areas of the Alzheimer's disease brain. *Australian Dementia Forum*, Sydney, 2018.
- 8. Shepherd C et al. Tau pathology is associated with reduced neuronal expression of the senescence marker P16INK4a. *Australian Dementia Forum*, Sydney, 2018.
- 9. Shepherd C et al. Tau pathology is associated with reduced neuronal expression of the senescence marker P16INK4a. Australian Society for Medical Research, Sydney, 2018.
- 10. Tan RH et al. Distinct TDP-43 inclusions suggest divergent pathomechanisms in FTLD and FTLD-ALS. *Fight MND*, Melbourne, 2018.

Journals

- 1. Agarwal S et al. Predictors of survival and progression in behavioural variant frontotemporal dementia. *Eur. J. Neurol.* 2019; 26(5): 774-779.
- 2. Aoyagi A et al. Aβ and tau prion-like activities decline with longevity in the Alzheimer's disease human brain. *Sci Transl Med* 2019;11(490).
- 3. Baldo B et al. SIRT1 Is Increased in Affected Brain Regions and Hypothalamic Metabolic Pathways Are Altered in Huntington Disease. *Neuropath Appl Neurobiol* 2019; 45 (4), 361-379.
- 4. Bhatia S et al. Apolipoprotein D Upregulation in Alzheimer's Disease but Not Frontotemporal Dementia. *J Mol Neurosci* 2019; 67 (1), 125-132.
- 5. Forrest SL et al. Heritability in frontotemporal tauopathies. *Alzheimers Dement (Amst)* 2019; 11:115–124.
- 6. Forrest SL et al. Coexisting Lewy body disease and clinical parkinsonism in frontotemporal lobar degeneration. *Neurology* 2019;92(21):e2472–e2482.
- 7. Forrest SL et al. Cellular and regional vulnerability in frontotemporal tauopathies. *Acta Neuropathol*. 2019;138(5): 705-727.
- 8. Guerreiro R et al. Heritability and genetic variance of dementia with Lewy bodies. *Neurobiol Dis* 2019;127:492–501.
- 9. Hsiao JT et al. Reductions in COQ2 Expression Relate to Reduced ATP Levels in Multiple System Atrophy Brain. *Front Neurosci* 2019;13:1187.
- 10. Karch CM et al. Tau Consortium Stem Cell Group. A Comprehensive Resource for Induced Pluripotent Stem Cells from Patients with Primary Tauopathies. *Stem Cell Reports* 2019 Nov 12;13(5):939-955.
- 11. Kun-Rodrigues C et al. A comprehensive screening of copy number variability in dementia with Lewybodies. *Neurobiol Aging* 2019;75:223.e1–223.e10.
- 12. Lee JS et al. Arylsulfatase A, a genetic modifier of Parkinson's disease, is an α -synuclein chaperone. Brain 2019;142(9): 2845-2859.
- 13. O'Rourke MB et al. Higher Mass Accuracy MALDI-TOF/TOF Lipid Imaging of Human Brain Tissue in Alzheimer's Disease. *Curr Protoc Mol Biol* 2019; 126(1): e86.
- 14. Paasila PJ et al. The relationship between the morphological subtypes of microglia and Alzheimer's disease neuropathology. *Brain Pathol* 2019;29(6):726–740.
- 15. Pottier C et al. Genome-wide analyses as part of the international FTLD-TDP whole-genome sequencing consortium reveals novel disease risk factors and increases support for immune dysfunction in FTLD. *Acta Neuropathol* 2019;137(6):879-899.
- 16. Shehadeh J et al. Expression of tyrosine hydroxylase isoforms and phosphorylation at serine 40 in the human nigrostriatal system in Parkinson's disease. *Neurobiol Dis* 2019;130:104524.
- 17. Shepherd CE et al. Brain Banking for Research into Neurodegenerative Disorders and Ageing. *Neurosci Bull* 2019;35(2):283–288.
- 18. Stevens CH et al. Increased Tau Phosphorylation in Motor Neurons From Clinically Pure Sporadic Amyotrophic Lateral Sclerosis Patients. *J Neuropathol Exp Neurol* 2019;78(7):605–614.
- 19. Strohäker T et al. Structural heterogeneity of α -synuclein fibrils amplified from patient brain extracts. *Nat Commun* 2019;10(1):5535.
- 20. Tan RH et al. The underacknowledged PPA-ALS: A unique clinicopathologic subtype with strong heritability. *Neurology* 2019;92(12):e1354–e1366.
- 21. Tan RH et al. Von Economo Neurons in Behavioral Variant Frontotemporal Dementia with UnderlyingAlzheimer's Disease. *J Alzheimers Dis* 2019;69(4):963–967.
- 22. Trist BG et al. Oxidative stress in the aging substantia nigra and the etiology of Parkinson's disease. *Aging Cell* 2019;18(6): e13031.

- 23. Virachit S et al. Levels of glial cell line-derived neurotrophic factor are decreased, but fibroblast growth factor 2 and cerebral dopamine neurotrophic factor are increased in the hippocampus in Parkinson's disease. *Brain Pathol* 2019;29(6):813–825.
- 24. Woerman AL et al. Multiple system atrophy prions retain strain specificity after serial propagation in two different Tg(SNCA*A53T) mouse lines. *Acta Neuropathol* 2019;137(3):437–454.
- 25. Yang Y et al. TDP-43 levels in the brain tissue of ALS cases with and without C9ORF72 or ATXN2 gene expansions. *Neurology* 2019;93(19):e1748–e1755.

Oral presentations

- 1. Ooi L. Networks in differentiation identifies selective vulnerability of pluripotent stem cells and motor neurons to ubiquitin proteasome system stress. *Cold Spring Harbour Laboratory Network Biology Conference*, New York USA, 2019.
- 2. Ooi L. Pluripotent stem cells in neurogenerative disease. *Gage Conference*, Canberra Boys Grammar School, ACT, 2019.
- 3. Ooi L. Hyperexcitability during normal aging and amyotrophic lateral sclerosis is governed by changes in M-current and H-current. *International Kv7 Channels Symposium*, Naples, Italy, 2019.
- 4. Oyston L et al. MCMBP is a new PD gene. *Cold Spring Harbor Laboratory Network Biology Conference*, New York USA, 2019.
- 5. Purushothuman S et al. Lysosomal and autophagosome-protein changes in late-stage pathologicallyconfirmed human post-mortem brains cohorts with Alzheimer's disease compared with Lewy body disease and mixed-type disease pathology: Evidence from two distinct brain regions. *Australian Dementia Forum*, Tasmania, 2019.
- 6. Sytnyk V. The role of neuronal growth regulator 1 in dopamine mishandling in Parkinson's disease. *Australian Neuroscience Society Imaging Workshop*, Adelaide, 2019.
- 7. Sytnyk V. The role of neuronal growth regulator 1 in dopamine mishandling in Parkinson's disease. *UNSW Dopamine Symposium*, Sydney, 2019.

- 1. Affleck AJ et al. Heterogeneous anti-hypertensive medication usage is associated with Alzheimer disease neuropathologic scores. *11th ForeFront Scientific Meeting*, The University of Sydney, 2019.
- 2. Beauchamp LC et al. Perturbations of the dopaminergic pathway in the olfactory bulb may contribute to prodromal Parkinson's disease-related hyposmia. *Society for Neuroscience*, Chicago, USA, 2019.
- 3. Bok E et al. Small leucine-rich repeat proteoglycan: A novel pathogen candidate for Parkinson's disease. *Society for Neuroscience,* Chicago, USA, 2019.
- 4. Forrest SL et al. Unravelling astrocytic pathology in frontotemporal lobar degeneration. *Light Microscopy Australia*, Brisbane, 2019.
- 5. Huynh B et al. Dementia in Parkinson's disease is associated with more severe locus coeruleus pathology. *11th ForeFront Scientific meeting*, The University of Sydney, 2019.
- Huynh B et al. Parkinson's disease with dementia is associated with more severe locus coeruleus pathology compared to those without dementia. *FENS regional meeting* (FRM2019), Belgrade, Serbia, 2019.
- 7. Lack A et al. Cytokine expression in presenilin 1 Alzheimer's disease. *World Congress of Inflammation*, Sydney, 2019.
- 8. Lack A et al. Cytokine expression in presenilin 1 Alzheimer's disease. *Alzheimer's Association International Conference*, Sydney, 2019.
- 9. Lee M et al. The role of Biglycan as an endogenous pathogen in Parkinson's disease. *The 6th annual Glia conference 2019 of the Korean Society for Brain and Neural Science*, Seoul, Korea, 2019.
- 10. Leshchyns'ka I et al. NEGR1 and dopamine mishandling in Parkinson's disease. *11th ForeFront Scientific Meeting*, Sydney, 2019.

- 11. Leshchyn'ska I et al. The neural cell adhesion molecule L1 is overexpressed in the motor cortex of individuals with motor neuron disease. *11th ForeFront Scientific Meeting*, Sydney, 2019.
- 12. McCann EP et al. Genetic and immunopathological analysis of CHCHD10 in Australian amyotrophic lateral sclerosis and frontotemporal dementia and transgenic TDP-43 mice. *30th International Symposium on ALS/MND*, Perth, 2019.
- 13. Mazumder S et al. Cellular Changes in the Substantia Nigra and Subthalamic Nucleus during Parkinson Disease pathology and Deep Brain Stimulation Treatment. *Australian Society for Medical Research NSW*, Sydney, 2019.
- 14. Mazumder S et al. Cellular Changes in the Substantia Nigra and Subthalamic Nucleus during Parkinson Disease pathology and Deep Brain Stimulation Treatment. *Australian Neuroscience Society*, Adelaide, 2019.
- 15. Mohan A. Differential expression of synaptic, neuroinflammatory and neurotransmission-related genes a microarray study of regional differences in the ageing human brain. *Alzheimer's Association International Conference*, Los Angeles, USA, 2019.
- 16. Paasila P et al. Microglial activation in the motor cortex of Alzheimer's disease cases and inferior temporal cortex of non-demented individuals with high Alzheimer's-type pathology. *Alzheimer's Association International Conference*, Sydney, 2019.
- 17. Shepherd C et al. Disease and mutation-specific increases in T lymphocytes in FTLD-tau. *NHMRC National Institute for Dementia Research*, Tasmania, 2019.
- 18. Wen L et al. Nix mediated mitophagy: a new therapeutic approach to Parkinson's disease. *11th ForeFront Scientific Meeting*, The University of Sydney, 2019.

Journals

- 1. Amadoru S et al. Comparison of amyloid PET measured in Centiloid units with neuropathological findings in Alzheimer's disease. *Alzheimers Res Ther* 2020; Mar 4;12(1):22.
- 2. Dobson-Stone C et al. CYLD is a causative gene for frontotemporal dementia amyotrophic lateral sclerosis. *Brain* 2020; Mar 1;143(3):783-799.
- 3. Forrest SL et al. Are mutations in MAPT associated with GGT type III? *Neuropathol Appl Neurobiol* 2020; Jun;46(4):406-409.
- 4. Forrest SL et al. A Practical Approach to Differentiate the Frontotemporal Tauopathy Subtypes. J *Neuropathol Exp Neurol* 2020; Oct 1;79(10):1122-1126.
- 5. Ling H et al. Fulminant corticobasal degeneration: a distinct variant with predominant neuronal tau aggregates. *Acta Neuropathol* 2020; Apr;139(4):717-734.
- 6. McCann EP et al. Genetic and immunopathological analysis of CHCHD10 in Australian amyotrophic lateral sclerosis and frontotemporal dementia and transgenic TDP-43 mice. J. Neurol. Neurosurg. Psychiatry 2020; 91(2):162-171.
- 7. Moore KM et al. Age at symptom onset and death and disease duration in genetic frontotemporal dementia: an international retrospective cohort study. *Lancet Neurol* 2020;19(2): 145-156.
- 8. Newman M et al. Accelerated loss of hypoxia response in zebrafish with familial Alzheimer's diseaselike mutation of presenilin 1. *Hum Mol Genet* 2020; Aug 11;29(14):2379-2394.
- 9. Orme T et al. Analysis of neurodegenerative disease-causing genes in dementia with Lewy bodies. *Acta Neuropathol Commun* 2020; Jan 29;8(1):5.
- 10. Oyston LJ et al. Reply: CYLD variants in frontotemporal dementia associated with severe memory impairment in a Portuguese cohort. Brain 2020; Aug 1;143(8):e68.
- 11. Phan K et al. Uncovering pathophysiological changes in frontotemporal dementia using serum lipids. Sci Rep 2020;10(1): 3640.
- 12. Piras IS et al. ESHRD: deconvolution of brain homogenate RNA expression data to identify cell-typespecific alterations in Alzheimer's disease. *Aging (Albany NY)* 2020; Mar 2;12(5):4124-4162.
- 13. Piras IS et al. Transcriptional profiling of multiple system atrophy cerebellar tissue highlights differences between the parkinsonian and cerebellar sub-types of the disease. *Acta Neuropathol Commun* 2020: Jun 3;8(1):76.
- 14. Shepherd CE et al. Intracellular and secreted forms of clusterin are elevated early in Alzheimer's disease and associate with both Aβ and tau pathology. *Neurobiol Aging* 2020; 89:129-131.
- 15. Shepherd CE et al. Alzheimer's amyloid-β and tau protein accumulation is associated with decreased expression of the LDL receptor-associated protein in human brain tissue. *Brain Behav* 2020; Jul;10(7):e01672.
- 16. Symons GF et al. The Neurological Consequences of Engaging in Australian Collision Sports. J Neurotrauma 2020; Mar 1;37(5):792-809
- 17. Tan RH, Halliday GM. Author response: The underacknowledged PPA-ALS: A unique clinicopathologic subtype with strong heritability. *Neurology* 2020; Feb 11;94(6):283.
- 18. Trist B et al. Superoxide dismutase 1 in health and disease: How a front-line antioxidant becomes neurotoxic. *Angew Chem Int Ed Engl.* 2020 Mar 6. Epub ahead of print.

Oral presentations

Poster presentations

1. Lok HC et al. Novel rare variants in CYP27A1 gene are associated with increased protein instability and variable neurodegenerative diseases. *Australian Functional Genomics Conference*, Sydney, 2020.